top of page
Search
vilytaninneuprot

DTU Aero Glass 5 Download: What You Need to Know About This Awesome App



Kaman Precision Measuring Systems is the leader in highly-engineered non-contact displacement and speed measurement for critical applications primarily found in aerospace, defense, space, semiconductor, energy, and high precision industrial and laboratory equipment.


A wind turbine blades consists of two faces (on the suction side and the pressure side), joined together and stiffened either by one or several integral (shear) webs linking the upper and lower parts of the blade shell or by a box beam (box spar with shell fairings) (see Schema on Figure 2) [12]. The flapwise load is caused by the wind pressure, and the edgewise load is caused by gravitational forces and torque load. The flapwise bending is resisted by the spar, internal webs or spar inside the blade, while the edges of the profile carry the edgewise bending. From the point of loads on materials, one of the main laminates in the main spar is subjected to cyclic tension-tension loads (pressure side) while the other (suction side) is subjected to cyclic compression-compression loads. The laminates at the leading and trailing edges that carry the bending moments associated with the gravitation loads are subjected to tension-compression loads. The aeroshells, which are made of sandwich structures, are primarily designed against elastic buckling. The different cyclic loading histories that exist at the various locations at the blades suggest that it could be advantageous to use different materials for different parts of the blade.




dtu aero glass 5 download




A significant damage form observed in operating turbine blades is caused by (abrasive) airborne particulates impacting and eroding the leading edge, especially towards the tip where velocities are higher. Once established this rough surface will degrade the aerodynamic performance of the blade and reduce power production; if left unrepaired structural damage to the laminate material will soon develop requiring a longer and more complex repair effort [21,22].


Carbon fibers are considered to be a very promising alternative to the glass fibers. They show much higher stiffness and lower density than the glass fibers, thus, allowing the thinner, stiffer and lighter blades. However, they have relatively low damage tolerance, compressive strength and ultimate strain, and are much more expensive than the E glass fibers [28,29]. Carbon fiber reinforced composites are sensitive to the fiber misalignment and waviness: even small misalignments lead to the strong reduction of compressive and fatigue strength. Carbon fiber composites are used by the companies Vestas (Aarhus, Denmark) and Siemens Gamesa (Zamudio, Spain), often in structural spar caps of large blades [28].


Aramid and basalt fibers. Further, an interesting alternative is using non-glass, high strength fibers first of all, aramid and basalt fibers. Aramid (aromatic polyamide) fibers demonstrate high mechanical strength, and are tough and damage tolerant, but have low compressive strength, low adhesion to polymer resins, absorb moisture, and degrade due to the ultraviolet radiation [30].


Hybrid composites. Hybrid reinforcements (E-glass/carbon, E-glass/aramid, etc.) represent an interesting alternative to the pure glass or pure carbon reinforcements. Ong and Tsai [33] demonstrated that the full replacement would lead to 80% weight savings, and cost increase by 150%, while a partial (30%) replacement would lead to only 90% cost increase and 50% weight reduction for 8 m turbine. The world currently longest wind turbine rotor blade, the 88.4 m long blade from LM Wind Power is made of carbon/glass hybrid composites [34].


The ideal sizing not only protects the otherwise fragile fibers during processing it also reduce fuzzy behavior, it disperse well on the fiber surface resulting in a homogeneous product, it ensure a good wetting during manufacturing of the composite yielding low a low void content, and it maximize the fiber matric interaction for optimum stress transfer. The multiple tasks cannot be covered by one compound thus the need of multiple components [75,76]. The patents behind sizings have been studied and they reveal that sizings for glass fibers consist of minimum a film former and a coupling agent, but mostly more components are included. A large study indicated that the film former makes up around 80 wt % of the dry sizing and the coupling agent around 10 wt %. The task of the film former is to protect against fiber-fiber damage and to protect the roving during winding and weaving. It is often a polymer similar to the matrix that the end-product aims for e.g., polyesters, polyurethanes, and epoxies yielding a good wetting during composite manufacture. Reduction of the stress corrosion triggered by water is attained by the addition of a coupling agent [77].


This is often chosen to be an organosilane and in some cases chromium or titanium oxides. Organosilanes has the possibility to react with the glass fiber surface through a sol-gel reaction which can covalently bond the organosilane or a polymeric form of the organosilane to the fiber surface. With a functionality of the organosilane that complement the matrix it is possible for these to react thus forming a connection between the fibre and the matrix. This is the reason why the coupling agent is considered a crucial parameter in regards to the adhesion between fibre and matrix. The most used silanes have amine or epoxide functionalities. Anti-static agents reduce the fuzziness of the fibres and thereby helps form the roving. Emulsifier agents stabilize the insoluble components that are added to the sizing suspension. Furthermore they reduce the formation of foam and adjust the viscosity of the sizing. Lubricants improve the dispersion on the glass fibres and help protect the surface. Acid or alkalis can be added to adjust the pH to around 4 in order to facilitate the hydrolysis of the silanes. Wetting agents and anti-oxidants can also be added to sizings [73,76,78,79].


In the regions under compressive loading (the downwind side of the blade and spar) fiber crushing and shear banding can be observed. In [101,102], the damage mechanisms of glass fiber composites under compressive loading was studied experimentally, using SEM observations, as well as numerically. The damage mechanisms under cyclic loading (fatigue) are in many cases different from the static damage mechanisms. For multidirectional laminates, the longitudinal plies (with fibers aligned in the direction of tensile load) control the fatigue behavior and lifetime of the composites. The presence of backing fibers (i.e., fibers oriented off-axis to the load direction) can also have a negative effect on the fatigue life of the composites [103].


The structure of the blade, as represented in Figure 2, is made of several elements, namely shear webs, load carrying beam, leading and trailing edge and aerodynamic shell. Depending on the blade manufacturer, the design and the arrangement of these elements will be different. In general each of these elements is consisting of a specific type of composite and the blade is manufactured as a one-piece component. To separate the different elements, the locations of the elements need to be known and a saw with diamond blade and sufficient water cooling is required. Due to that complex structure, it is difficult to recycle blades into any other application than blade. In addition, the blades to be recycled will be found in various conditions. Decommissioning of wind turbines can be decided as the turbines are reaching end of life, but also at earlier stage if it becomes interesting to replace the turbines by newer models or because the turbines were prematurely damaged. As a result, the quality of the material found in blades and the quality of the blade structure will be varying from blade to blade. The assessment of the blades conditions also represents a challenge. Visual inspection, which is normally used to determine the conditions of blades during inspection, does not reveal the presence of potential sub-surface damages. Finally, the amount of material coming from blades will fluctuate greatly as material will sporadically come from the decommissioning of single turbine or large windfarm. To summarize, the amount of material to be recycled coming from wind turbine blades will be varying in design and material, in quality and quantity. The development of a sustainable recycling solution for blades is therefore very complicated.


The most important parts of the turbines, produced from composites, wind turbine blades, are subject to complex, combined impact, static and random cyclic loading. In order to resist these loading over many years and hundreds of millions of loading cycles (on the one side) and to reduce the loads (like gravity, on the other side), the wind blades are built from fiber reinforced polymer composites. While the currently available solutions (in the simplest case, E-glass/epoxy composite) satisfy most of these conditions partially, the necessity for new, better solutions leading to the increased reliability and reduced costs for wind turbines, is apparent. That is why a lot of efforts are put in the development of new, stronger, more damage resistant, faster producible, more environmentally friendly and recyclable composites for wind turbines. Some of the promising directions of development of stronger, more reliable, environmentally friendly and economically producible composites are listed below.


Carbon fibers represent a very promising alternative to the traditional E-glass fibers. Other alternatives are high strength glasses, basalt, aramid and natural fibers. Carbon fibers ensure higher stiffness while their disadvantages are higher costs, lower compressive strength and high sensitivity to local defects (e.g., misalignment). In several studies, the combination of carbon and E-glass fibers was recommended as a promising solution, which allows to achieve the combination of higher stiffness (due to carbon fibers) with limited cost increase. With view of resin matrix, thermoplastics have some advantages over traditionally used thermosets, e.g., recyclability. The investigations on the applicability of these groups of materials for wind blade composites have been carried out intensively during the last years. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page